Porous Carbon Nanoparticle Networks with Tunable Absorbability
نویسندگان
چکیده
Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels.
منابع مشابه
Preparation of Bamboo-based Porous Carbons with Tunable Structure by Growing Carbon Nanofibers
The activated bamboo char (ABC) was available commercially and carbon nanofibers (CNF) were grown on its surface by a CVD method. The resultant composites were characterized by nitrogen method at 77K and scanning electron microscopy (SEM). The structure of bamboo-based porous carbon might be tunable by adjusting purposively the growth of CNFs. The CNF/ABC composite would combine the properties ...
متن کاملA Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries.
A Fe/Fe3O4/N-carbon composite consisting of a porous carbon matrix containing a highly conductive N-doped graphene-like network and Fe/Fe3O4 nanoparticles was prepared. The porous carbon has a hierarchical structure which is inherited from rice husk and the N-doped graphene-like network formed in situ. When used as an anode material for lithium batteries, the composite delivered a reversible ca...
متن کاملThe influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads.
Biofilms are a common constituent of the subsurface and are known to influence contaminant transport; however only a few studies to date have addressed microbial controls on nanoparticle mobility in porous media. The impact of a 3-day Pantoea agglomerans biofilm on the mobility of zinc oxide (ZnO) nanoparticles was studied in column experiments containing sand and glass beads at near-neutral pH...
متن کاملA novel strategy to synthesize hierarchical, porous carbohydrate-derived carbon with tunable properties.
Hydrothermal carbonization (HTC) of carbohydrate is an interesting candidate for the preparation of carbon materials, as it provides an easy, inexpensive and environmental friendly route. However, it is difficult to prepare porous carbon materials by a straight HTC process. Herein, the solubilising technology of micelles was introduced to direct the HTC of fructose by using an amphiphilic block...
متن کاملCore−Shell Nanocomposites Based on Gold Nanoparticle@Zinc− Iron-Embedded Porous Carbons Derived from Metal−Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions
Core−shell nanocomposites based on Au nanoparticle@zinc−ironembedded porous carbons (Au@Zn−Fe−C) derived from metal−organic frameworks were prepared as bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). A single Au nanoparticle of 50−100 nm in diameter was encapsulated within a porous carbon shell embedded with Zn−Fe compounds. The resu...
متن کامل